N ov 2 00 5 Derivations and 2 - Cocycles of Contact Lie Algebras Related to Locally - Finite Derivations
نویسنده
چکیده
Abstract. Classical contact Lie algebras are the fundamental algebraic structures on the manifolds of contact elements of configuration spaces in classical mechanics. Xu introduced a large category of contact simple Lie algebras which are related to locally finite derivations and are in general not finitely graded. The isomorphism classes of these Lie algebras were determined in a previous paper by Xu and Su. In this paper, the derivation algebras and the 2-cohomology groups of these Lie algebras are determined, and it is obtained that the 2-cohomology groups of these Lie algebras are all trivial.
منابع مشابه
Lie-type higher derivations on operator algebras
Motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study Lie-type higher derivations on operator algebras in the current work. It is shown that every Lie (triple-)higher derivation on some classical operator algebras is of standard form. The definition of Lie $n$-higher derivations on operator algebras and related pot...
متن کاملDouble derivations of n-Lie algebras
After introducing double derivations of $n$-Lie algebra $L$ we describe the relationship between the algebra $mathcal D(L)$ of double derivations and the usual derivation Lie algebra $mathcal Der(L)$. In particular, we prove that the inner derivation algebra $ad(L)$ is an ideal of the double derivation algebra $mathcal D(L)$; we also show that if $L$ is a perfect $n$-Lie algebra wit...
متن کاملOn dimension of a special subalgebra of derivations of nilpotent Lie algebras
Let $L$ be a Lie algebra, $mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$. We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields. Also, we classi...
متن کاملCharacterization of Lie higher Derivations on $C^{*}$-algebras
Let $mathcal{A}$ be a $C^*$-algebra and $Z(mathcal{A})$ the center of $mathcal{A}$. A sequence ${L_{n}}_{n=0}^{infty}$ of linear mappings on $mathcal{A}$ with $L_{0}=I$, where $I$ is the identity mapping on $mathcal{A}$, is called a Lie higher derivation if $L_{n}[x,y]=sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y in mathcal{A}$ and all $ngeqslant0$. We show that ${L_{n}}_{n...
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کامل